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1. ABSTRACT

This paper introduces an innovative methodology for evaluating the relative significance of

energy-efficient technologies applied to fluorescent lamp ballasts.  The method involves

replacing the point estimates of life cycle cost of the ballasts with uncertainty distributions

reflecting the whole spectrum of possible costs, and the assessed probability associated with

each value.  We first examine the overall impact of variations of  input variables to output

variables such as Life-Cycle Cost (LCC) and payback time through the established analytical

models for a specific product class - two ballasts operating two Lamp F40T12/ES lamps.   The

study then investigates the extent to which each input variable affects the outputs using the

importance assessment and the sensitivity analysis.  Finally, we revise the input distributions that
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are proven to be more influential on the output than other inputs and refine the analysis.  The

results of uncertainty and sensitivity analyses will help analysts reduce effort in data collection

and carry on analysis more efficiently.  These methods also enable policymakers to gain an

insightful understanding of which efficient technology alternatives benefit or cost what fraction of

consumers, given the explicit assumptions of the analysis.  

 2. INTRODUCTION

Studies of the impacts of energy-efficient technology on appliance energy consumption have

played an important role in aiding federal and state regulators develop appliance and lighting

efficiency standards, and assess the expected economic impacts of proposed standards on

consumers and manufacturers. The procedure for establishing federal standards is managed by

the U.S.  Department of Energy, and requires a thorough evaluation to ensure that any new or

amended standard achieve the maximum improvement in energy efficiency that is determined to

be technologically feasible and economically justified. The law requires a number of economic

factors to be considered, among which are the economic impact on manufacturers and

consumers, and the savings in lifetime operating costs  compared with the increase in product

price [NAECA 1987].



     1   Among the fourteen variables in the LCC calculations, four of them are fixed values, one
         is a scenario variable, and the rest are defined as probabilistic distributions.  The variables 
         for the LCC, but not for payback are: discount rate and ballast lifetime.

3

Two parameters that provide a measure of the benefit or cost to consumers of new energy-

efficient technologies are their life cycle costs (LCC) and payback times. Life cycle cost is

defined as the initial cost to the consumer, plus energy costs and other costs of operation and

maintenance over the lifetime of the technology, discounted to present value. Payback time is

the time in years required for an energy-efficient technology's savings in energy and other

operating costs to equal the incremental cost of the efficient technology over the baseline

technology. A reduced life cycle cost of an energy-efficient technology as compared to the

baseline technology assumed by the study provides an important economic justification for

energy efficiency standards incorporating the new technology.

However, developing convincing estimates of LCCs for existing and new energy-efficient

technologies requires addressing a number of concerns. Many variables can have some effect

on LCC, but not all of these have an equally large effect. Modeling the LCC of a technology

can require gathering data on a dozen or more such variables. For example, electronic ballast

technology examined in this paper can require data on up to 14 variables for LCC, and 12

variables for payback time.1 Without special  tools, the technology assessor does not know

which of these variables contribute significantly to uncertainty in the result, and which have little

or no effect.
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Compounding this difficulty is the problem of data availability and reliability. For some

variables, data may be widely available; for others, the sources may be poor or nonexistent,

requiring the modeler to make guesses, or extensive efforts to fill the gap. A tool to help the

modeler identify the variables with little or no influence on LCC, payback time and other widely

used indicators would help reduce analysis time and wasted effort, and increase confidence in

the final assessment. Identifying those variables which are significant but for which little data are

available would tell the investigator where to focus data-gathering resources; knowing that a

variable is a less significant contributor to the output indicator can mean that existing data is

sufficient input to the model even though it may be incomplete.

This paper discusses three steps for examining the relative significance of technology-specific

input variables to output variables such as LCC and payback time for energy-efficient

technologies: the overall uncertainty assessment, importance analysis, and the sensitivity

analysis. We apply these methodologies, and show how they can be used to analyze the

uncertainty and variability of inputs, in this case, for two-lamp fluorescent lamp ballast systems

common in the commercial sector. Then we discuss how the results of uncertainty and

sensitivity analyses provide useful information to policymakers concerning which efficient

technology alternatives cost the consumer more or less, given the explicit assumptions of the

analysis.
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Uncertainty analysis refers to the determination of the overall variation in an output due to the

collective effect of  inputs that either are not completely known or vary with individual data

points through a quantitative model, and the relative impacts of inputs on the output [Morgan 

and Henrion, 1990].  An example of an uncertain input, in this study,  is lifetime of the

fluorescent lamp ballasts—the exact value of average ballast lifetime is uncertain because the

distribution of values is not completely known, even though some data points from this

distribution are known. This is often designated as a Type B uncertainty [Hoffman and

Hammonds 1994]. Type A uncertainty, also referred to as variability (or heterogeneity), is

explained below.

The overall uncertainty analysis can provide some measure of how wide are the range of

outputs.  It reflects the whole spectrum of possible true values of the outputs, and the assessed

probability associated with each value.  However, it does not tell us how to identify the input

variables that have the largest effects on the output variables. Using importance assessment by

calculating rank order correlation between each individual input and the output, we are able to

partition the overall variation in output among the input variables.  In the example described in

this paper, the importance assessment determines that electricity price, ballast life, and annual

lighting hours have the largest effect of nine variables on total LCC and LCC saving (change of

total LCC from the baseline to design options). It provides a method of winnowing out the most
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significant variables from a set.

Having conducted the importance assessment to determine which of the input variables are

most important in their effect on the output variable, the investigator can now examine the effect

of variability in an individual input on the output variable while holding other variables as

constants. It answers such questions as: how much does the LCC change due to variations in an

individual input, e.g., electricity price? What percentage of consumers see a total lower LCC

vs. a higher LCC for a given range of electricity prices? This can be done with a sensitivity

analysis on selected important variables.  The sensitivity analysis determines the changes in

model response as a result of changes in individual model parameters through an established

quantitative model. It is usually conducted by varying one input parameter, while all other

variables are kept as fixed values.  The purpose is to show what one-to-one correspondence

exists between the output and the input parameter under the study, given an assumption that no

other factors play a role.  Once knowing the underlying one-to-one relationship between an

important input, say the lighting hours, and the output, the LCC saving, we can easily anticipate

what likely output variation would be given the variability of the input data.  The lighting hours of

all commercial buildings in the U.S. reflect the intra-variability (or heterogeneity) in the sampled

data set and often is referred as Type A uncertainty [Hoffman and Hammonds, 1994].



     2   For historical reason, the baseline is commonly referred to as “energy efficient” magnetic.
         It is the least efficient of the three designs considered here, but is more efficient than 
         some other magnetic designs.
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3. UNCERTAINTY  ANALYSIS

Table 1 illustrates the inputs for the single-value approach to life-cycle cost (LCC) for one class

of fluorescent lamp ballasts, the two-lamp F40T12/ES, which is commonly used in the

commercial sector. We considered three design options: Design 0 is the baseline, a Magnetic

ballast 2 (M). Design 1, the first of the two more efficient designs is the Cathode Cutout (CC).

Design 2 is the Electronic Rapid-Start design (ERS). For the range of discount rates in this

analysis, (4, 8 and 12 % real), the cathode cutout has the lowest LCC.

We performed the uncertainty analysis on a Macintosh computer, and used the Median Latin

Hypercube variation of a Monte Carlo simulation as the sampling method. The data sources for

the three key variables are the same as those used in the sensitivity analysis described in detail

later in this paper. The electricity prices for all utilities are from investor-owned electric utility

sales and revenue data [EIA 1996] for 1995 combined with publicly owned electric utility rates

[EIA 1995] for 1994. The annual lighting hours distribution was developed from Xenergy’s

lighting equipment database [Xenergy, 1995] (see 4.II). We calculated ballast consumer prices

by analyzing Bureau of Census reports, using value and shipment data for 1993 and 1995 (see
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4.III). Where data are not as abundant for other inputs, we specified triangular distributions

based on prior knowledge.

For many of the variables in this table, the values for each of the three options are the same.

The values displaying the important differences among these designs are their ballast retail

prices, and the number of fixture watts. More energy efficient ballasts cost more to purchase

but require less power to produce a given quantity of light, so they have lower annual electricity

costs. The data sources we used to estimate many of these inputs show a wide variability. The

U.S. average price of electricity in the commercial sector in the year 2000 is projected to be

$0.075/kWh (1994$). Local prices range broadly from $0.01 to 0.15/kWh. Electricity price

here represents a Type A uncertainty, because of its wide variability.

There is very little reliable data on ballast lifetime, and thus it represents a Type B uncertainty,

because there are an insufficient number of data points. From discussions with facilities

managers and other users, we estimate ballast life at 33,000 hours, mean, with a range from 0

to 65,000 hours. Annual lighting hours ranges from 0 to 8,760 hours/yr, with a mean of 3600

hrs/yr. Ballast service life, measured in years, is defined as the ballast life in hours divided by the

number of annual lighting hours (hours/yr). The mean is 7.8 years, with a range of 0 to 26 years.

The large ranges in these inputs suggest that LCC is highly variable, and it is a variable of Type

A.
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Figure 1 is the probability density for the total life cycle cost (Tot_lcc) in dollars calculated at

8% discount rate, given the estimated variability or uncertainty in all the input variables. It shows

the results of taking 1,000 samples from the possible ranges of the input variables. The total

LCC values range from $40 to $465, with a mean of $188. The next step is to attribute to each

of the input variables its contribution to this overall uncertainty.

4. IMPORTANCE ASSESSMENT

To determine the ranking of input variables in order of significance of their effect on the

uncertainty of the outputs, we conduct an importance analysis on the input variables by

calculating the rank order correlation coefficients between each of the input variables and each

output variable. Rank order correlation (or Spearman correlation)  is measured by computing

the ranks of the probability samples, with the largest value assigned a rank of 1 and the smallest,

the rank of n, and then computing their correlation. Rank order is a good measure of the

strength of monotonic relations regardless of the underlying distributions of the variables

involved.

By using the rank order of the samples instead of the actual samples, the measure of correlation

is not affected by skewed distributions or extreme values (so-called distribution-free and
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outlier-resistance measure), and is therefore more robust than the simple correlation (or

Pearson correlation).

Importance is then defined as the absolute rank-order correlation coefficient between the

sample of output values and the sample for each uncertain input. Unlike commonly used

deterministic measures of sensitivity, importance averages over the entire joint probability

distribution. Therefore, it works well even for models where the sensitivity to one input depends

strongly on the value of another [Lumina Decision Systems, 1996].

Figures 2 and 3 show the relative importance of 9 variables on total life cycle cost (LCC) and

change in total life cycle cost (LCC) of the two alternative technologies (Cathode Cutout and

Electronic Rapid Start) with respect to Magnetic. For change in LCC (dLCC), the three most

important inputs having significant large correlations with the output (greater than 0.4) for all

three technologies, are ballast life, electricity price, and annual operating hours. These three

inputs will have the dominant effect on change in total life cycle cost. 

The same analysis for payback times, as shown in Figure 4, shows that annual operating hours

becomes the most influential input, followed by electricity price and ballast consumer price

relative to other inputs.
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We conclude that the variables that tend to have the  most significance in determining the

change in LCC (dLCC) and payback times include electricity price, annual operating hours,

ballast life, and ballast consumer price. The consistently unimportant variables are times to

change lamps and ballasts, labor rates for installing ballasts and lamps, relamp life and lamp

price. To address discount rate variability, we ran these calculations for three scenarios:

discount rates of 4%,  8% and 12%. This paper reports only results from the 8% scenario.

Having finished a preliminary analysis of the sources of uncertainty, we can now conduct a

sensitivity analysis, examining one by one the effect of the key input variables on the output

variables. We have also identified key areas for future research: ballast lifetime is an important

variable, but data on the lifetime of these commercial ballasts are very poor.  A national field

study could provide useful information to fill this information gap.

5. SENSITIVITY  ANALYSIS

LCC change and payback periods are calculated using a probability distribution curve of

possible values for the input variables weighted by their likelihood of occurrence using the

Monte Carlo simulation technique. As in the uncertainty analysis, we examined the two-lamp

F40T12/ES product class of fluorescent lamp ballasts. We examined four important input
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variables: electricity price, annual lighting hours, ballast consumer prices and ballast lifetime,

which contribute significantly to economic impacts.  This analysis shows how variability in these

inputs individually affects change in life cycle costs and payback periods.

General Method

Life cycle cost and payback calculations are repeated using a different input value each time for

the parameter being varied, while other input parameters are held constant. The calculations are

described in an earlier paper, [LBNL 1996]. Each parameter is varied separately, so the

interaction between parameters is not considered. The empirical probability distribution of each

parameter is estimated from sample data to represent the range of conditions among U.S.

consumers. These distributions are weighted so that economic benefits and costs of energy

efficiency standards can be assessed on a national scale.

As with the uncertainty analysis, the sensitivity analysis simulations used a Macintosh computer.

We constructed the program first using DEMOS, Decision Modeling System, then transferred

the program to Analytica [Lumina Decision Systems, 1996]. The software  took 1,000 samples

from the distribution for one variable at a time, while other variables were kept as single point

values taken from the conventional engineering and economic analysis. The Median Latin

Hypercube variation of a Monte Carlo simulation was the sampling method. We also tested the
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Simple Monte Carlo and Random Latin Hypercube schemes but observed no significant

differences in resulting variations. [See Appendix for more information on sampling methods.]

I. Sensitivity to Electricity Price

(a)   Data

We have combined data sets from several sources to obtain the commercial sector electricity

prices. We used 1995 investor-owned electric utility (IOU) sales and revenue data [EIA 1996]

combined with 1994 publicly owned electric utility (POU) rates [EIA 1995]. These sources

provide commercial-sector electricity prices from 145 major U.S. investor-owned utilities and

441 publicly-owned utilities. (The 1995 publicly-owned utility data were not available at the

time of the analysis.) In 1994, the IOUs accounted for more than 88% of the total electricity

sales in the commercial sector.

Figure 5 shows the relative frequency plot (histogram) of electricity prices weighted by sales

volume. The x-axis presents the average electricity prices for each utility, ranging from 1.6 to

14.4 ¢/kWh (1995$). The height of the bar represents the probability of the corresponding

electricity price,  calculated as the ratio of each utility's commercial customer electricity sales to

total commercial sales by all the utilities.
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Figure 6 and Table 2 show the cumulative probability function (curve) of electricity price to

commercial customers constructed from the data in Figure 5. The table or figure can be used to

estimate the probability that a given price is less than or equal to any particular value of

electricity price. More than 97% of electricity sales in this sector occurs at prices between

$0.04/kWh to $0.12/kWh, since 2% of sales occur at prices less than $0.04/kWh, and 0.6%

of sales occur at prices greater than or equal to $0.12/kWh.

(B)   Results

Calculating LCC at different values of electricity prices results in Figure 7, which shows a linear

relationship between the change in LCC and electricity price. Compared to the Magnetic

ballast, the Cathode Cutout and Electronic Rapid Start ballasts reduce LCC (resulting in a

negative LCC change) at prices above $0.032/kWh and $0.036/kWh respectively. In the case

of Cathode Cutout compared to Magnetic, for 99.5% of electricity sales (>$0.032/kWh), there

would be a net savings , and for 0.5%, a net cost to the consumer. Comparing Electronic Rapid

Start to Magnetic, for 99% of electricity sales (>$0.036/kWh), there would be a net savings ,

and for 1%, a net cost to the consumer.

Two non-linear curves in Figure 8 show the dependence of the payback periods of the

Cathode Cutout and Electronic Rapid Start design options relative to Magnetic on the
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electricity price. Based on the distribution of electricity prices, Table 3 gives the percentage of

electricity sales in the U.S. commercial sector by payback period. Payback periods less than or

equal to 6 years occur for Cathode Cutout and Electronic Rapid Start for 93% and 95% of

electricity sales respectively. Electronic Rapid Start has a shorter payback period than Cathode

Cutout at electricity prices below $0.06/kWh, and Cathode Cutout has shorter payback than

Electronic Rapid Start at higher electricity prices, Payback relative to Magnetic is less than 6

years for both Cathode Cutout and Electronic Rapid Start at electricity prices above

$0.05/kWh. (For reference, the average ballast lifetime is approximately 7.8 years.)

II. Sensitivity to Annual Lighting Hours

(a)   Data

The annual lighting hours distribution was developed from Xenergy's XENCAP database

[Xenergy 1995]. We received an extract from Xenergy's lighting equipment database,

aggregated to the three-digit zip code level. This database contains data from audits of more

than 24,000 buildings across the U.S. and has information about operating hours and equipment

counts for various lighting equipment types in the buildings audited. We used data from audits

performed during 1990  through 1995 to approximate current practice. These data were used
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to obtain a count of four-foot fluorescent lamp ballasts, of which the two-lamp F40T12/ES

ballast is an example, found in each of 21 annual lighting hour "bins" (0 to 8 hrs/wk, >8 to 16

hrs/wk, etc. corresponding to 0 to 416 hrs/yr, 417 to 832 hrs/yr, etc.). This distribution was

weighted by building type using data in the 1992 Commercial Building Energy Consumption

Survey (CBECS) [EIA 1994]. We then generated values continuously across the 21 lighting

hour "bins" through the sampling process so that full variability could be simulated.

Figure 9 illustrates the distribution density curve of lighting hours and Figure 10 shows the

corresponding cumulative probability of annual lighting hours. The vertical scale of a density

curve does not represent the actual probability of the corresponding x-axis value as it does for a

relative frequency plot (histogram) of a discrete distribution. Instead, it depicts "probability

density," the probability per x-axis unit of generating a value within a very small range around

the x-axis value. 

The percentage of ballasts operating in a specific interval of annual lighting hours can be

determined easily from the cumulative distribution curve. For instance, the percent of ballasts

with annual lighting hours between 2000 and 7000 hours is about 86% (98% operating at less

than 7000 hours/year, minus 12% operating at less than 2000 hours/year).
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(B)   Results

The calculations of LCC were carried out using 1000 simulation samples taken from the

specified input distribution for annual lighting hours and mean values for all other parameters. A

scatter plot (Figure 11) of the sensitivity analysis of LCC change to lighting hours shows a non-

linear relationship between the input and the output, as well as the crossover points at which

each curve crosses the zero net savings line (LCC change = 0). The results show that when a

magnetic ballast is replaced with a cathode cutout ballast, a net saving in LCC occurs for 98%

of ballasts, or those with annual lighting hours above approximately 900 hours/year. A net

saving in LCC occurs for 97% of ballasts, or those with operating hours above 1100 hrs/yr

when an magnetic ballast is replaced with an electronic rapid start ballast. Combining the

sensitivity scatter plot (Figure 11) with the input cumulative probability curve (Figure 10), we

can obtain an estimate of the percent of ballasts in the commercial sector having a net LCC

savings for each of the design options. In the case of Cathode Cutout compared to Magnetic,

for 98% of ballasts there would be a net savings and for 2% of ballasts a net cost. In the case

of Electronic Rapid Start compared to Magnetic, for 97% of ballasts there would be a net

savings and for 3% of ballasts a net cost.

The proportion of the ballast population with net savings  during its life cycle can be represented

by the area under the density curve and to the right of the dashed  line corresponding to the cut-
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off point of the lighting hours as illustrated in Figure 12.

We implemented the same procedures for the sensitivity of the payback period to annual

lighting hours and the results are presented in Figure 13 and Table 4. At all lighting hours, the

Cathode Cutout technology has a slightly shorter payback period than the Electronic Rapid

Start technology. For Cathode Cutout ballasts compared to the Magnetic, the payback is less

than 6 years for 86% of the ballasts, those operating less than 2000 hours/year. For the

Electronic Rapid Start ballast compared to the Magnetic, the payback period is less than 6

years for 84% of the ballasts, those operating for more than about 2300 hrs/yr. These results

also show that at a specific number of lighting hours, the Cathode Cutout design has a shorter

payback period than the Electronic Rapid Start design.

III.  Sensitivity to Ballast Consumer Prices of 2F40T12/ES

(a)   Input

We calculated ballast prices by analyzing Bureau of Census reports, using the value and

shipments data for 1993 and 1995. A comparison of prices for the two years indicates that the

price for Magnetic and Cathode Cutout ballasts (listed as EMAG and CCUT in this source)
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have increased from 3% to 6%. Although this does not necessarily mean that the same

magnitude of increase applies to the end-user price, it does offer an indication of the price

trend. Hence, the ballast consumer prices (average or point values) for Magnetic and Cathode

Cutout are likely to be on the high side. The high price is estimated as 15% higher than the

average price used in the analysis. The low end is estimated 10% lower than the average.

The prices calculated from the Bureau of Census reports for electronic ballasts (Electronic

Rapid Start and Electronic Instant Start), on the other hand, decreased by about 15% from

1993 to 1995.  Therefore, the consumer prices for electronic ballasts tend to be lower than the

average price used in the LCC and payback analysis. The high price is estimated as 5% higher

than the average price, and the low price is estimated as 25% lower than the average price.

Based on the estimates, we have specified the distributions of ballast consumer prices for

Magnetic (the baseline), Cathode Cutout, and Electronic Rapid Start designs as shown in Table

5. We then produced the distribution of incremental price by subtracting the baseline

distribution from the distribution of each design option. These distributions represent variability

in the incremental ballast price of each design with respect to the baseline, which causes

variability in the LCC change and payback period. We assume that more energy-efficient

designs are always more expensive than the baseline. Figures 14 and Table 6 illustrate the two

incremental density curves and  cumulative distributions respectively for 2F40T12/ES product
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class.

(b)   Results

A scatter plot in Figure 15 showing a linear dependency between LCC change and incremental

distribution of ballast consumer price indicates that both Cathode Cutout and Electronic Rapid

Start design options will have net savings over the full range of incremental ballast prices.

Extending the two straight lines upwards further, the conclusion is that the incremental price of

Cathode Cutout-Magnetic would approximately need to exceed $15 and the Electronic Rapid

Start-Magnetic, to exceed $24, before net costs (increased LCC) would result from these two

more efficient designs.

Finally, as shown in Figure 16, a linear relationship is visible between payback period and

incremental ballast price. The payback period will increase more rapidly for the Cathode

Cutout design than Electronic Rapid Start as their corresponding incremental price goes up.

This implies that the time the Cathode Cutout ballasts require for a return on investment may be

more sensitive to the change in ballast price than the time required by the Electronic Rapid

Start. Table 7 shows payback period given the incremental ballast price of each design option.
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were not picked up by the sampling process as shown in the statistics table in Figure 17.
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IV. Sensitivity to Ballast Lifetime

(a)   Input

The lifetime of ballasts has been estimated as a triangular distribution (Figure 17) specified by

three parameters. They are: minimum lifetime, 2,000 hours; mode, 45,000; maximum lifetime,

80,000. The mode is the lifetime that has the greatest probability density (or the highest

possibility). Estimates of the three parameters are based on engineering judgment from the

limited data available3.

Since the distribution is asymmetric, with a larger range to the left, the mean (42,330) is less

than the mode (45,000). Figure 18 and Table 8 show the cumulative probability of the lifetime

of the ballasts having specific values. Ballasts having lifetimes less than 20,000 hours constitute

10%; 20,000 to 60,000 hours are 75% of all ballasts; and the remaining 15% have lifetimes

greater than 60,000 hours.
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(a)   Results

Two non-linear curves in Figure 19 present the change in LCC over the range of ballast

lifetime. They were generated from a simulation run of 1,000 samples. At low ballast lifetimes,

Electronic Rapid Start has higher net costs than Cathode Cutout. Because Cathode Cutout has

a different relamp period from that of the Magnetic and Electronic Rapid Start ballasts (16,150

versus 19,000 hours), the LCC change curve (Cathode Cutout-Magnetic) is discontinuous.

Note that there are four discontinuous segments in the LCC change (Cathode Cutout-

Magnetic) curve caused by the difference in relamp  periods between the Cathode Cutout and

the baseline Magnetic. The four segments' ranges in lighting hours are 16,150 to 19,000;

32,300 to 38,000; 48450 to 57,000; and 64,600 to 76,000. The first two segments result in

net costs (a positive LCC change) and the last two, in net savings (negative LCC change). By

examining both Figure 18 and 19, we made an approximation that for 82% of Cathode Cutout

ballasts, there would be a net saving relative to Magnetic and for 18%, a net cost.  We

estimated the total net savings (83%) and net costs (17%) for Electronic Rapid Start taking into

account both the primary trajectory and the segments. 

To see the percentile of ballasts in different LCC change intervals, we have produced the

cumulative probability curve of LCC change (Figure 20) and a bar chart (Figure 21). Most of
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the Cathode Cutout ballasts, about 70%, have moderate net savings, $0 to $10, during their life

cycles. A majority of the Electronic Rapid Starts, about 60%, generally have higher net savings,

ranging from $5 to $15.

6.  REFINED DISTRIBUTIONS AND RESULTS

The significance of the importance assessment is that it allows analysts to identify the input

variables that have more impacts on the output than the others in a quantitative model.  After

knowing which variables are more important, they can focus time and effort on collecting more

accurate information or formulating better distribution functions to reduce uncertainty in these

influential variables so that the simulation result would have less variation.  Therefore refining

analysis with revised distributions for the important variables becomes a necessary step for a

complete uncertainty study.  In this section, we present revised distributions for three variables

identified in Section 4 (The Importance Assessment) and a brief description for each.  
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I.  Distributions

Ballast Price

A refined distribution of the incremental ballast price was obtained by performing a nation-wide

survey of ballast prices in the market place. With the goal of gathering ballast price data, LBNL

attempted to contact two electrical distributors per state in late 1998 and January 1999.  Each

distributor was asked to give a contractor price for each of the ballasts, assuming an order for

100 of any given ballasts, for a “good” client.  The resulting prices were then marked-up by

13% to account for contractor mark-up. This is the mark-up a lighting contractor would charge

its client for buying and installing the ballasts.  Table 9 shows two normal distribution

parameters of the incremental ballast prices for both Cathode Cutout and

Electronic Rapid Start.
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Table 9     Mean and Standard Deviation of Incremental Ballast Prices               

   Incremental Ballast Price (1997$) - Normal Distribution

Design Options 

(2-Lamp Feature)

Mean Value Standard Deviation

Cathode Cutout 9.04 1.36

Electronic rapid Start 11.4 1.71

Electricity Price

The electricity price distribution was further refined so as to use the electricity price at the

margin that a consumer faces as a result of a decrease in electricity consumption. Marginal

electricity prices in $1997/kWh are used.  A detailed explanation of the process for deriving

these marginal electricity rates can be found in the Technical Support Document (TSD) [US

DOE, 2000]. Electricity prices projected for the year 2003 are used because that is the earliest

year in which changes to the  minimum ballast efficiency standards could occur. 

Electricity price is a function of the average price distribution obtained from the Energy

Information Agency’s data on revenue and sales,  for the industrial and commercial sectors by
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utility, and the epsilons discussed in the TSD. Epsilon is the percent difference between the

average electricity price and the marginal price calculated for each customer on each tariff (the

average epsilon is 5.5%).  Using the epsilons discussed in the TSD, the marginal electricity

price is calculated as:

Marginal Electricity Price = Sales Weighted Average Price x (1 + Epsilon)

Figure 22(A) and (B) illustrate the distributions of 1997 commercial average electricity price

and Epsilons that are used to calculate the marginal electricity rate.

Ballast Life

An average life of 50,000 hours is assumed for the ballast with a Weibull distribution  starting at

18,000 hour life used to describe the uncertainty in the lifetime as shown in Figure 23. Weibull

distributions describe data resulting from life and fatigue tests and are commonly used to

describe failure time in reliability studies.  
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Annual Operating Hours

There is no further refinement on this variable.

II.  Simulation Results

With the revised distributions discussed above, we conducted a simulation with 10,000 trials

using an Excel spreadsheet model and Crystal Ball, a commercial simulation software.  Figures

24 - 25 present estimated distributions of LCC savings, changes in life-cycle cost of a design

option from the baseline, for both Cathode Cutout and Electronic Rapid Start (US DOE,

2000).  It is shown that with the 10,000 samples used, the average cost for CC is about $2 and

the average saving for ERS is $6, respectively.  The figures have also revealed that more than

30% or 80% of the samples would have saved money if CC or ERS had been adopted.

Payback distributions for CC and ERS are illustrated in Figures 26 and 27.  They show that for

the 10,000 cases analyzed for each lamp/ballast combinations, there are more than 70% or

95% of samples whose payback period is less than 15 years for CC or ERS respectively (US

DOE, 2000).  

Finally, an importance assessment is revisited with the three revised distributions (Ballast price,

Electricity price, and Ballast life-time).  With comparisons with Figures 2 and 3, the results,
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Figures 28 and 29, show that the refinement of distributions do not alter the relative rankings of

those important variables identified before for both LCC changes and payback calculations. 

The only exception is that the ballast lifetime with a new Weibull distribution depicted in Figure

23,  appears less influential in determining the LCC changes than with the previous Triangular

distribution shown in Figure 17.

7.  GENERAL  CONCLUSIONS

We have applied uncertainty determination, importance assessment, and sensitivity analyses to

study the variability of life cycle cost and payback times for two-lamp electronic ballasts

typically found in the commercial sector. The overall uncertainty determination illustrates the

entire spectrum of possible output values associated with their likelihood of occurrence in

response to the various values of the inputs.  The importance assessment shows that for the

LCC calculation out of nine variables, with distributions representing variations of values,

electricity price, ballast life, and annual lighting hour have the most impact on the variation in the

output of total life cycle cost, and that out of eight variables, annual lighting hours,  electricity

price, and ballast consumer price are more important than others in determining the uncertainty

in the payback time for two energy-efficient alternatives to the current magnetic ballast. These

results identify  the input variables with the most significant contribution to uncertainty. These



29

variables are therefore singled out for sensitivity analysis.

Using sensitivity analysis, we have shown the effect of each of four variables, electricity price,

annual lighting hours, ballast price, and ballast life, on total life cycle cost and payback time to

each of two energy-efficient alternatives, Cathode Cutout and Electronic Rapid Start, with

respect to the magnetic ballast. The results can be stated in the form of a comparison of ranges

of input and output variables.    For example, for electricity prices > $0.032/kWh, the sensitivity

analysis shows that for 99.5% of electricity sales there would be a net savings for Cathode

Cutout compared to Magnetic, while for 99% of electricity sales, there would be a net savings

for Electronic Rapid Start compared to Magnetic.

We have demonstrated that importance assessment and sensitivity analyses offer valuable tools

for analysts and policy makers who are assessing proposed energy efficiency standards that

require the adoption of new technologies. Uncertainty analysis allows the investigator to

determine which of the values are contributing the most to uncertainty in the output variables,

e.g. life cycle cost or payback times, and which are not affecting these outputs substantially.

Thus, the investigator can focus more resources on gathering the most extensive and accurate

data for only the most important input variables, and spend less effort on the less important

variables.
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Sensitivity analysis provides comparisons of the benefit or cost to consumers of new and

baseline technologies for a given range of values of a single variable such as electricity price or

product cost. The analysis can provide an indication of how many consumers will benefit from

the adoption of the technology, and how many will incur a cost at a given range of the input

variable. This information helps reduce the number of scenarios that a policymaker must

evaluate from the thousands, involving a dozen variables or more, to just a handful, involving a

few key variables.

Finally, a simulation run of the LCC and payback is conducted with all 9 distributions, including 

four revised distributions.  Although the average values of output do not show significant

difference from the result using the previous distributions, the variations of LCC change, the

difference between the design options and the baseline, are reduced significantly.
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8. APPENDICES

A.  Monte Carlo Simulation

Simulation can be defined as the repetitive analysis of a mathematical model.  The Monte Carlo

simulation refers to a class of simulation techniques for decision-making in which probability

distributions are used to obtain input parameters when the model is being evaluated (Ripley,

1987; Smith, 1994; Burmaster and Anderson, 1994).  The distributions are used to generate

random outcomes for each parameter that is considered to be important and has a probabilistic

value.

A distribution can either be approximated by a theoretical one such as a normal or exponential

distribution curve, or represented by an empirical probability table in which the probability of

occurrence of various distinct values (levels) are estimated by their relative frequencies in

sampled data or weighting factors from the existing data sources.  These random outcomes are

then used in calculations of the decision criterion (or measure of merit), which in this analysis are

life cycle cost and payback times.  Since other parameters are entered as fixed values in all

calculations, the variability in the outputs (LCC and Payback) calculated by Monte Carlo

simulation is due entirely to the model uncertainty and the variation in the parameters under
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study.

The core of the Monte Carlo simulation is that the outcomes of the parameter under study must

be randomly selected from the distribution representing it.  Two sampling methods widely used

in computer simulations are the Simple Monte Carlo and the Latin Hypercube (Morgan and

Henrion, 1990).  The Simple Monte Carlo sampling first draws a cumulative  probability curve

from a specified distribution (theoretical distribution or empirical probability table).  Then a

random generator is used to produce a set of independent, uniformly distributed numbers, Rn,

(i.e., numbers between 0 and 1).  Through the rule of an inversion (Ripley, 1987), a set of the

input values Xn corresponding to the cumulative probability curve can be obtained for a given

sample size n.

However, in a parametric sensitivity study, the ultimate goal of the simulation is not the

randomness but the resulting equidistribution (or equiprobable) properties of the sets of values

in the parameter space (Morgan and Henrion, 1990).  To achieve this, a technique called Latin

Hypercube Sampling (LHS) that uses a stratified sampling approach, was originated (Iman and

Conover, 1980).  It divides each input distribution into n (sample size) equiprobable intervals. 

A single value is taken at random from within each of these intervals, based upon the probability

distribution.  This produces a sample of n values for each input distribution which are more
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uniformly spread out than for strict random sampling.  In a variation of LHS, Median Latin

Hypercube, the median of each of the n intervals is chosen instead of a random value so that a

more uniform sampling is produced.

B.  Calculations Used in the Analysis (Two Lamp F40T12/ES)

(1)  General Inputs

(B1.1)                                                             (B1.2)Bservice
Ophr It

otherwise

Blife
Ophr It=

>




_ , _

,

0

0

                    
Lprice

(.95xLLPx.6 .05xLDP)xBNNxDEF,LDP 0

(.95xLLPx.6 .05xLLPx.45)xBNNxDEF, otherwise
=





+ >

+

 where:
LDP = 1.18 ($/lamp) DGSC lamp list price (1994$);

BNN = 2, number of lamps per ballast;

DEF = 1, deflator factor.

(B1.3)                           Period Blife
Ophr It= _



34

(B1.4)                                              [ ]Pwf x DrateDrate
Period= − + −1 1 1( )

where: Drate = {0.04, 0.08, 0.12}, discount rate chosen;

Table B1.  Parameters in General Inputs

Parameter Definition Forms of Uncertainty Source

Blife Lifetime of ballast (hrs) Triangular (2K, 45K, 80K) Prior knowledge

Bservice Ballast lifetime in service (yrs) Derived Calculated in (B1.1)

Ele_pri Electricity price ($/kWh) Empirical Distribution EIA 1995 & 1996 

Labor1 Helper’s Labor rate for installing
lamp ($/hr)

Triangular (18.75, 29.35,
34.38)

Subjective
Judgement

Labor2 Electrician’s labor rate for
installing ballast ($/hr)

Triangular (35, 42.10, 52.5) Subjective judgement

Lprice Lamp equipment cost  ($) Triangular (1.68, 2.77, 5.97 Prior knowledge

Ophr_It Annual Lighting hours (hrs/yr) Empirical Distribution Xenergy 1995

Period Period of analysis (yrs) Derived Calculated in (B1.3)

Pwf Present worth factor Derived Calculated in (B1.4)

  Llp                  Lamp list price ($)              Triangular 1.68, 2.77, 5.97)      Prior knowledge

(2) Total Installed Cost

Total installed cost of a ballast is the sum of costs for ballast and lamps.  Equation (B2.1)

calculates the present value of the quantity:
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(B2.1)                                             
i

iPv lampbal Pv lamp Pv bal_ _ _= +

where: I = 0, 1, 2; an index for design options.  

Each of the two components is computed from a set of equations shown in the following:

I.    Lamp Installed Cost:

The lamp installed cost refers to the costs of installing all replacement lamps during the 

ballast life time; whereas the cost of installing the initial lamp(s) are included in the 

calculation of ballast installed cost.

(B2.2)                                              ( )Cost_llab= Ttc_lam
60 x Labor1

(B2.3)                                         Lservice
Ophr It

otherwise

lamp
Ophr It=

>





Re
_ , _

,

0

0

(B2.4)                                    ( )[ ]Per Round x LserviceBservice
Lservice1 0 5= + .

(B2.5)                          

[ ] [ ]Pv lamp x Cost llab LpriceCost llab Lprice xDrate
LserviceDrate

PerDrate
Drate_ ( _ )( _ )

( )

( )= − ++

− +

−− +

1 1

11 1

Table B2  lists all parameters used in the calculation of the lamp installed cost and briefly 

describes the forms of their uncertainties and sources.
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Table B2.  Parameters in  Lamp Installed Costs

Parameter Meaning Forms of Uncertainty Source

Cost_llab Lamp labor cost ($) Derived Calculated in (B2.2)

Lservice Lamp service life (yrs) Derived Calculated in (B2.3)

Per 1 Intermediate variable * (yrs) Derived Calculated in (B2.4) 

Pv_lamp Present value of lamp cost ($) Derived Calculated in (B2.5)

Ttc_lam Time to change lamp (min.) Triangular (18.8,23.5,28.2) Prior knowledge

* used to allow calculation of the full cost of the final replacement lamp.

II.    Ballast Installed Cost:

Likewise, ballast installed cost is computed from the following set of equations.  Table B3 

gives a summary of the parameters in the calculations.

(B2.6)                               ( )Cost blab
Ttc bal

x Labor Labor_
_

= 





+
60

1 2
2

(B2.7)                                         iBprice iBconpri Lprice= +

(B2.8)                       [ ] [ ]iPv bal xiCost blab Bprice
BserviceDrate

PeriodDrate

Drate
_ ( _ )

( )

( )= +
−− +

−− +

1 1

1 1

where: i = 0, 1, 2; representing design options

As mentioned above, the ballast is installed with lamp(s) and therefore the ballast labor 

cost, Cost_blab, as well as the present value of ballast installed cost, Pv_bali, have 

included these initial lamp(s) costs.
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Table B3.  Parameters of Ballast Installed Cost

Parameter Meaning Forms of
Uncertainty

Source

Bconpri0 Baseline ballast consumer price ($) Normal
(11.20,12.44,14.31)

Subjective judgement (*)

Bconpri1 Design 1 ballast consumer price ($) Normal
(16.97,18.86,21.69)

Same as above

Bconpri2 Design 2 ballast consumer price ($) Normal
(21.71,28.94,30.39)

Same as above 

Bpricei Ballast price ($) Derived Calculated in (B2.7)

Cost_blab Ballast labor cost ($) Derived Calculated in (B2.6)

Pv_bali Present value of ballast cost ($) Derived Calculated in (B2.8)

Ttc_bal Time to change ballast (min.) Triangular (24,30,36) Prior knowledge

*The judgement is based on manufacturer’s retail price and 20% of it is taken as the standard deviation

(3)   Annual Electricity Cost

This part of analysis is to calculate annual electricity cost during the entire lifetime of a 

ballast.  Since each engineering design has different energy efficiency, electricity usage 

varies.  Energy saving is then contributing to the life-cycle cost and is one of the criteria in 

engineering design.  The equations are shown below.

(B3.1)                              iElec use iNwatt xOphr It
_

_
= 1000

where: Nwatt0 = 72.7 (W), normalized fixture watt for the baseline (Magnetic);
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Nwatt1= 65.6 (W), normalized fixture watt for design option 1 (Cathode
Cutout);

Nwatt2 = 61.9 (W), normalized fixture watt for design option 2 (Electronic
Rapid Start);

(B3.2)                     iElec t iElec use x Ele pri_ cos _ _=

where: i = 0, 1, 2; representing design options

Table B4.  Parameters of Electricity Cost

Parameter Meaning Forms of Uncertainty Source

Elec_costi Annual electricity cost, ($) Derived Calculated in (B3.2)

Elec_usei Annual electricity use, (kWh/yr) Derived Calculated in (B3.1)

(4)   Life Cycle Cost and Payback

The final part of the analysis is to compute total and annual life-cycle cost as well as 

payback period for each engineering design of the product.  The equations are the 

following:

(B4.1)                  iTot lcc iPv lampbal iElec t x Pwf_ _ _cos= +

(B4.2)                                   iAnn lcc iTot lcc
Pwf

_
_

=
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(B4.3)             Bal_costi = Bpricei + Cost_blab

(B4.4)                       iAnlmp t
Ophr ltx Lprice Cost llab

lamp_ cos
_ ( _ )

Re=
+

(B4.5)           iPayback iBal t Bal t

Elec t JElec t Anlmp t iAnlmp t
=

−

− + −




















_ cos _ cos

_ cos _cos _ cos _ cos
0

0 0

where:  i = 1, 2; representing design options other than the baseline.
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